MicroRNA-218 promotes prostaglandin E2 to inhibit osteogenic differentiation in synovial mesenchymal stem cells by targeting 15-hydroxyprostaglandin dehydrogenase [NAD(+)]
نویسندگان
چکیده
The chondrogenic differentiation of synovial mesenchymal stem cells (SMSCs) is regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process remain unclear. MicroRNAs (miRs/miRNAs) are undersized non‑coding RNAs responsible for the post‑transcriptional regulation of gene expression, by binding to the 3'‑untranslated regions (3'‑UTRs) of their target mRNAs. miRNAs may constitute a promising tool to regulate SMSC differentiation and to advance the controlled differentiation of SMSCs in therapeutic applications. The aim of the present study was to examine the role of miR‑218 in SMSC differentiation towards chondrocytes. The present study comparatively analyzed the expression profile of known miRNAs and specific target genes in SMSCs between early and late differentiation stages. Western blotting and reverse transcription‑quantitative polymerase chain reaction analysis of gene expression demonstrated the upregulation of 15‑hydroxyprostaglandin dehydrogenase [NAD(+)] (15‑HPGD), prostaglandin E2 (PGE2) and rate limiting enzymes responsible for the synthesis of PGE2 precursors throughout chondrogenesis. Through correlation analysis, it was observed that there was a significant association between miR‑128, 15‑HPGD gene expression, 15‑HPGD protein expression and microsomal prostaglandin E synthase 1. Further experiments demonstrated that miR‑218 decreased PGE2 concentration by binding to the 3'‑UTR of 15‑HPGD. Using an immunofluorescence reporting system, it was observed that miR‑218 regulated the expression of 15‑HPGD during the differentiation of SMSCs into cartilage, and subsequently inhibited osteogenesis during chondrogenesis by acting on the 3'UTR of 15‑HPGD. Therefore, miR‑218 may be an important regulator targeting osteogenic factors and modulating cartilage formation and differentiation. The results of the present study provided a novel insight beneficial to cellular manipulation methods during cartilage regeneration, and in cartilage tissue engineering research.
منابع مشابه
Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملmiR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD)
MicroRNA contribute to tumor radiation resistance, which is an important clinical problem, and thus we are interested in identifying and characterizing their function. We demonstrate that miR-620 contributes to radiation resistance in cancer cells by increasing proliferation, and decreasing the G2/M block. We identify the hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide)...
متن کامل1,25-dihydroxyvitamin D3 induces NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase in human neonatal monocytes.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] induces the differentiation of monocytes into macrophage-like cells in vitro. To identify the genes expressed during this process, we performed differential display polymerase chain reaction on RNA extracted from cord blood monocytes (CBMs) treated with 1,25-(OH)2D3. Treated CBMs expressed type-I 15-hydroxyprostaglandin dehydrogenase (type-I 15-PGDH), the...
متن کاملMonoclonal antibodies that inhibit the enzyme activity of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase.
Three hybridoma cell lines secreting antibodies against human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) were produced. Purified IgG2b from these cell lines recognized a distinct band of Mr 28,000 on SDS/PAGE from the purified enzyme as well as a band of Mr 56,000 from the crude enzyme preparation. These three monoclonal antibodies inhibited 15-OH-PGDH activit...
متن کاملCurcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway
Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...
متن کامل